Typical Approach:

Electric Utility
Distribution Planning

Judd L. Putnam

COMMISSION

Overview

- Distribution Planning Purpose
- Define Planning Areas
- Model the System and Understand Loads
- Forecasting Load Growth
- Normalizing Weather
- Establishing Planning Criteria
- Identifying Alternatives
- Approvals
- Challenges

Distribution Planning Purpose

- Identifies electric power delivery deficiencies
- Typical forecast includes a10 year planning horizon
- Bound by a specified geography
- Results in:
 - Understanding of system capabilities and limitations
 - List of recommended projects required over time period
 - Understanding for:
 - Financial requirements
 - Long lead time materials
 - Right-of-Way Needs
 - Required permits
 - Community and State involvement

Define Planning Areas

- For a Defined Planning Areas
 - Analyze capacity and operability
 - Typically includes radial transmission, subtransmission, substations and feeders
 - Requires review of all components
- Identify plans and alternatives by Planning Area considering:
 - Capacity
 - Load Growth
 - Operability

• Define Planning Area

Model the System and Understand Loads

- Model the System
 - Equipment
 - Protection
 - Connectivity
 - Tie points
- Understand Loads
 - Collect actual substation and feeder maximum peak loads
 - SCADA
 - Circle Charts
 - Ensure 'normal' configuration

- Model the System
- Understand Loads
- Forecast Load Growth

Forecasting Load Growth

- Knowledge from employees in local offices
- Known large customer additions / expansions
- Forecasts from cities
- Maximum land use and load potential for area served
- Load growth trends
- Home start forecasts i.e. American Metro Study
- Correlation of system, substation and feeders load growth forecasts
 - Understanding of coincidence
 - Ensure consistency

Normalize for Weather Using 90/10

Peak Annual Four-Hour Temperature

Planning

 Design to serve load conditions occurring 'once in a decade'

Operating

- Forecast with multiple zones
- Model next-day during peaking conditions
- Make system adjustments
 - ✓ Switching
 - √ Load Control

MARCH 2005 Generation

Multiple weather zones may apply CALIFORNIA ENERGY

COMMISSION

7

Applying Planning Criteria

- Performance standards defined for each component considering conductor size, type and operating voltage
- Influencing factors:
 - 1. Current limit: related to the ability of the facility to withstand heat
 - 2. Voltage limit: provide adequate voltage to customer premise
 - Usually at least 95% of nominal voltage on distribution
 - 3. Contingency Outage Capability
 - <u>Single Contingency Protection:</u> system will continue to operate within voltage and loading limits after the loss of a single element
 - Typically applies to substations and feeder mainlines
 - <u>Double Contingency Protection</u>: system will continue to operate within voltage and loading limits after the loss of two elements.
 - Typically applies to transmission facilities

Increase Efficiency with Systems

- Collect the actual peak load data
- Overlay forecasted new load and planned load transfers
- Graphically view and edit connectivity
- Perform "what-if" load analysis
- Edit connections using "drag-and drop" features
- Automate roll up of transformer and feeder loads to better calculate area load forecasts

CALIFORNIA ENERGY 9
COMMYS Pased graphical tool and system model

Identifying Alternatives

- Select alternatives that solve forecasted problem
- Analyze implementation issues
 - Right-of-Way issues
 - Community restrictions
 - Duct size limitations
 - Substation exit restraints
 - Constructability
- Perform economic analysis on viable alternatives
- Select and develop expansion alternatives that minimize costs
- Incorporate short term reliability efforts in system expansion plan
- Manage the risk associated with load growth uncertainties

Typical Types of Work Identified

Capacity

- Line Extensions
- New Feeders
- New Substations
- Re-conductoring
- Substation upgrades
- Switching to Balance Load

Configuration

- Better switching alternatives
- Distribution automation
- Creating looped systems

Spending on Configuration

All points on the curve represent the same reliability (SAIDI) though they do not cost the same

Approval

- Prioritize projects using forecasted overload severity
- Best practice:
 - Identify and approve projects 12 – 18 months in advance of peak
 - Make minor adjustments if peak loads are not as predicted
 - Facilitates:
 - Better planning
 - Increased productivity
 - ·Enhanced budget input

Substations		Feeders
Red	≥ 110%	≥ 120%
Orange	≥ 105% and <110%	≥ 110% and <120%
Yellow	> 100% and <105%	≥ 105% and <110%

Typical Preliminary Capital Budget Distribution Capacity

Planning Estimate

A - Actuals
F MARGHst2005

CALIFORNIA ENERGY
COMMISSION

Planner Challenges

- Accurate load forecasting
- Having accurate data to model the system
- Adjusting for normal configuration
- Adjusting for weather normalization
- Gathering accurate load information
- Keeping circuits balanced
- Ensuring coordination of protective devices
- Designing ties for contingency switching
- Aligning load forecasts
- Coordination with substation and transmission upgrades

Planner Challenges with Preferred Alternative

- Limits for duct availability
- Challenges to securing Right-of-Ways
- Resistance from community
- Limitations for securing outages to construct
- Constraints to exit substations
- Substations are limited for additional sources
- Ensuring completion by peak load season
- Communicating
 - ✓ The plan for funding
 - ✓ The plan for accurate engineering and construction
 - ✓ System risk associated with not expanding

Additional Planner Challenges

- Automated switching deployment
- Contingency analysis for un-funded upgrade projects
- Adjusting to incorporate local load shedding
- Incorporating localized generation
- Having systems to accommodate interconnections
- Relay changes to accommodate generation addition
- Internal coordination for technology deployment
 - ✓ Settings
 - ✓ Installation Coordination
 - ✓ Operations training to utilize according to the criteria
 - ✓ Interface with SCADA
 - ✓ Crew acceptance
 - ✓ Battery maintenance and on-going testing

Additional Planner Challenges

- Fast track load additions that impact the existing plan
- Changing characteristics of existing load

Operation Challenges

- Maintaining configuration during peak loads
- Gathering load data (if not available automatically)
- Scheduling switching to provide outages for construction
- Operating using planning assumptions
- Entering information for system additions
- Dispatching to minimize outage duration

Conclusions

Distribution Planning -

- is a year round process
- not an exact science
- results in a range of possible load situations
- includes loading and operating issues
- provides the bottom up load projection for the system
- is focused on individual circuits